## Equation

Statement

## Goal

Let's call a positive integer composite if it has at least one divisor other than 1 and itself. For example:- the following numbers are composite: 1024, 4, 6, 9;

- the following numbers are not composite: 13, 1, 2, 3, 37.

You are given a positive integer n. Find two composite positive integers a, b such that a−b=n with the smallest possible value of a.

It can be proven that a solution always exists.

Input

The input contains one integer n (1≤n≤10^7): the given integer.

Output

Print two composite integers a,b (2≤b<a≤10^9,a−b=n) separated by a space.

Constraints

n (1≤n≤10^7):

a,b (2≤b<a≤10^9,a−b=n).

a,b (2≤b<a≤10^9,a−b=n).

Example

Input

1

Output

9 8

Game modes

Fastest

Test cases

Test 1 Test

Input

1

Output

9 8

Validator 1 Validator

Input

10000000

Output

10000004 4

Test 2 Test

Input

512

Output

516 4

Validator 2 Validator

Input

8958020

Output

8958024 4

Test 3 Test

Input

7

Output

15 8

Validator 3 Validator

Input

6767476

Output

6767480 4

Test 4 Test

Input

19

Output

25 6

Validator 4 Validator

Input

20

Output

24 4

Test 5 Test

Input

9765432

Output

9765436 4

Validator 5 Validator

Input

123456

Output

123460 4

Solution language

Solution

Stub generator input

Join the CodinGame community on Discord to chat about puzzle contributions, challenges, streams, blog articles - all that good stuff!

JOIN US ON DISCORD Online Participants