Statement

## Goal

Let's call a positive integer composite if it has at least one divisor other than 1 and itself. For example:

- the following numbers are composite: 1024, 4, 6, 9;
- the following numbers are not composite: 13, 1, 2, 3, 37.

You are given a positive integer n. Find two composite positive integers a, b such that a−b=n with the smallest possible value of a.

It can be proven that a solution always exists.
Input
The input contains one integer n (1≤n≤10^7): the given integer.
Output
Print two composite integers a,b (2≤b<a≤10^9,a−b=n) separated by a space.
Constraints
n (1≤n≤10^7):
a,b (2≤b<a≤10^9,a−b=n).
Example
Input
1
Output
9 8

Game modes
Fastest

Test cases
Test 1 Test
Input
1
Output
9 8

Validator 1 Validator
Input
10000000
Output
10000004 4

Test 2 Test
Input
512
Output
516 4

Validator 2 Validator
Input
8958020
Output
8958024 4

Test 3 Test
Input
7
Output
15 8

Validator 3 Validator
Input
6767476
Output
6767480 4

Test 4 Test
Input
19
Output
25 6

Validator 4 Validator
Input
20
Output
24 4

Test 5 Test
Input
9765432
Output
9765436 4

Validator 5 Validator
Input
123456
Output
123460 4

Solution language

Solution

Stub generator input
Join the CodinGame community on Discord to chat about puzzle contributions, challenges, streams, blog articles - all that good stuff!
Online Participants