Takuzu Solver (Easy mode)
Statement
Goal
Takuzu (aka 'Binary Sudoku' or 'Binairo') is a variant of Sudoku that only allows the numbers1. Each row and column must contain an equal number of 0s and 1s (e.g. 5 of each for a 10x10 grid).
2. No row or column may contain a sequence of three or more repeating digits (e.g.
3. No rows (or columns) can be duplicates of other rows (or columns).
Given an integer n and an incomplete nxn binary grid of
There will only be one valid solution.
Hard version: https://www.codingame.com/training/hard/takuzu-solver (Hint: you will need to include a backtracking algorithm and use all three rules)
Input
Line 1 : An integer n, the size of the grid (always even)
Next n lines : A row of n characters:0 , 1 or . (for unknown values)
Next n lines : A row of n characters:
Output
n lines : The completed board, with all . replaced with valid 0 s and 1 s, following the rules.
Constraints
4 < n < 16
n is even
All boards have a single valid solution
All boards can be solved using rule 2 alone (easy mode).
n is even
All boards have a single valid solution
All boards can be solved using rule 2 alone (easy mode).
Example
Input
6 .0...1 0.11.. ..1..0 .1...0 ....1. 11.0.0
Output
100101 001101 011010 110100 001011 110010
Tags
Loops, Sudoku, 2D array
Difficulty
Easy
Test cases
Test 1 Test
Input
6
.0...1
0.11..
..1..0
.1...0
....1.
11.0.0
Output
100101
001101
011010
110100
001011
110010
Validator 1 Validator
Input
6
0....1
0.0.11
..00..
1....0
....0.
.0.1..
Output
001101
010011
110010
101100
011001
100110
Test 2 Test
Input
8
.....00.
.1......
11.0..0.
..0....1
.1...0..
0.0..0..
....1..0
0.11.11.
Output
10011001
01100110
11001001
10010101
01101010
01010011
10101100
00110110
Validator 2 Validator
Input
8
.....1.1
.11.0..1
.1......
..0.0.1.
1.0....0
........
..1..00.
0..11..0
Output
10010101
01100101
01101010
10010011
11001100
00110110
10101001
01011010
Test 3 Test
Input
10
.......1..
.00..0..1.
.0..1..0.0
..1...1...
1.1......1
.......1..
.0..1...0.
....11...0
.0.0..1..0
0...0...1.
Output
0110010101
1001100110
1001101010
0110011001
1010100101
0101010110
1001101001
0110110100
1010011010
0101001011
Validator 3 Validator
Input
10
.00.00...1
....0.11.1
.11.....0.
.11......0
......0.0.
....1...01
1.00.0....
11.....0..
...1....1.
.11...00.0
Output
1001001011
1001001101
0110110100
0110101010
1001010101
0010110101
1100101010
1101001001
0011010110
0110110010
Test 4 Test
Input
12
0.0.0..1...0
....1...0...
.0.......1..
10.01.1...0.
..1.....0...
....1.0....0
.1....0...1.
.....1...0..
..1...0....1
1......1..0.
.00..00.0...
.1.1..1..1.0
Output
010101011010
011010100101
100101010110
101010101001
011001100101
100110011010
011010010110
100101101001
011001001011
101010110100
100110010011
010101101100
Validator 4 Validator
Input
12
..0...0.0..1
0.00.0.11.1.
.1.......0.0
..1....0....
0...0....00.
.......11..1
11..1.....0.
1..0.....1.1
..1...1.0...
.0...11.0...
1..........0
..0..1.00.1.
Output
100101010101
010010011011
011010101010
101101100100
010101011001
001010011011
110110100100
101001001101
011010110010
100101100101
101010011010
010101100110
Test 5 Test
Input
14
01.1.10.....1.
1.......1.1.10
..11..1...1..0
1...1..0......
...1.0..1....0
11....0....0..
....0.....1..1
1.1...0.00...1
1...0..1....0.
.1..0...0.0...
......1.0..1..
..1....1.....1
00.0.0....1..1
.0..1...11..0.
Output
01010101010011
11001001101010
00110110101100
10101010010011
01011001101100
11010100110010
00100110011011
10101001001101
11010101100100
01100110010011
10011011001100
01100101100101
00101010011011
10011010110100
Validator 5 Validator
Input
14
.....11.1.1.10
.0.1...0..1..0
.00..1.....0..
.......1......
.11.1....1..0.
.....00.0.0...
1..1..0.....1.
.......1.1.0.0
..1.0.........
00.1...1.00...
0....1.11.0..1
....1.......0.
.1.0.......0..
1.00...00....1
Output
01100110101010
10011010101100
10010101010011
01100101100110
01101010011001
10011001010101
10110100100110
01001011011010
10110010011001
00110101100110
01001101100101
10011010011001
01100101101010
11001010010101
Solution language
Solution
Stub generator input